Intravascular Lithotripsy for Peripheral Artery Calcification

The Disrupt PAD III Randomized Controlled Trial
30-day Outcomes

William A. Gray, MD
Chief of Cardiovascular Services, Main Line Health
Wynnewood, PA, USA
Faculty Disclosure

William A. Gray, MD

For the 12 months preceding this CME activity, I or my spouse/partner disclose the following types of financial relationships:

- Honoraria received from: None
- Consulted for: Shockwave Medical
- Held common stock in: None
- Research, clinical trial, or drug study funds received from: Shockwave Medical

I will not be discussing products that are investigational or not labeled for use under discussion.
Endovascular Treatment for Calcified PAD

• The presence of calcified PAD*:
 • Restricts arterial compliance
 • Results in poor balloon expansion, dissections and acute procedural failure
 • May impair effectiveness of DCBs by limiting drug uptake
 • Stents to address PTA failure may fracture and complicate future revascularization

• Distal embolization, dissection and perforation remain a concern with atherectomy treatment

• Patients with moderate-severe calcification are often excluded from endovascular treatment trials resulting in little available evidence to provide treatment guidance in this challenging patient population

*Rocha-Singh et al., Catheter Cardiovas Interv 2014; Tosaka et al, JACC 2012; Walker et al., J. Vasc Surg 2015
Intravascular Lithotripsy

Deliver catheter and inflate to low pressure
Generate sonic pressure waves using lithotripsy
Crack calcium
Safely expand the vessel

IVL
- Delivers 1 pulse/sec at effective pressure of ~50 atm
- At low balloon inflation pressure
- Fractures both superficial and deep calcium

Pre-IVL Treatment*

Post-IVL Treatment*

*Micro-CT scan analysis: R. Virmani, CV Path Institute
IVL treatment at low balloon pressure resulted in marked improvement in diameter stenosis with no stent implantation.
Peripheral IVL Clinical Programs

<table>
<thead>
<tr>
<th></th>
<th>Disrupt PAD I</th>
<th>Disrupt PAD II</th>
<th>Disrupt BTK</th>
<th>Disrupt PAD III RCT</th>
<th>Disrupt PAD III OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Enrollment completed</td>
<td>Enrollment completed</td>
<td>Enrollment completed</td>
<td>Enrollment completed</td>
<td>Enrolling</td>
</tr>
<tr>
<td>Study design</td>
<td>Single arm, safety & performance</td>
<td>Single arm, safety & effectiveness</td>
<td>Single arm, pilot</td>
<td>RCT, safety & effectiveness</td>
<td>Single arm, observational study</td>
</tr>
<tr>
<td>Study conduct*</td>
<td>CEC, ACL</td>
<td>CEC, ACL</td>
<td>ACL</td>
<td>CEC, ACL</td>
<td>ACL</td>
</tr>
<tr>
<td># of patients</td>
<td>35</td>
<td>60</td>
<td>20</td>
<td>306</td>
<td>Up to 1,500</td>
</tr>
<tr>
<td># of sites</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>Regions</td>
<td>NZ, EU</td>
<td>NZ, EU</td>
<td>NZ, EU</td>
<td>U.S., NZ, EU</td>
<td>U.S., NZ, EU</td>
</tr>
</tbody>
</table>

*CEC: Independent clinical events committee; ACL: Angiographic core lab
Objective
Assess the safety and effectiveness of IVL + DCB versus PTA + DCB to treat moderately and severely calcified femoropopliteal arteries

Statistics
Superiority analysis performed for primary and powered secondary endpoint

Study Design
Prospective, multicenter, single-blind, randomized controlled trial

NCT02923193

Moderate-severe calcium de novo femoropopliteal arteries
N = 306, 45 global sites

Randomized Cohort 1:1

- **IVL**
 - N = 153
 - IN.PACT DCB +/- stent
 - 30-day Follow-up
 - 6-month, 1-year, 2-year Follow-up

- **PTA**
 - N= 153
Study Endpoints

Primary Endpoint: **Procedural success**
- Residual stenosis ≤ 30% without flow-limiting dissection (≥ grade D) prior to DCB +/- stenting by angiographic core lab

Secondary Endpoints at 30 days:
- Major Adverse Events*
- CD-TLR
- ABI, RC, WIQ

Powered Secondary Endpoint at 12 months: **Primary patency**
- Acute PTA failure† requiring a stent at any time during the index procedure will be counted as a loss of primary patency
- Freedom from CD-TLR and freedom from restenosis determined by DUS or angiogram ≥50% stenosis

*MAE: Need for emergency surgical revascularization of target limb, unplanned target limb major amputation, thrombus or distal emboli requiring intervention to improve flow, perforations that require intervention including bail-out stenting.
†PTA failure defined as residual stenosis ≥50% by visual estimate, or unresolved flow-limiting (≥grade D) dissection, and trans-lesional gradient >10mmHg.
Key Clinical and Angiographic Eligibility Criteria

Inclusion
- Rutherford category 2, 3 or 4 of the target limb
- Target lesion is *de novo* SFA or popliteal artery
- Target lesion
 - RVD ≥ 4.0mm and ≤7.0mm
 - Stenosis ≥ 70% by visual estimate
 - Length ≤ 180mm for lesions 70-99% stenosis
 - CTO lesion length ≤ 100mm of the total ≤ 180mm target lesion
- Calcification ≥ moderate defined as presence of fluoroscopic evidence of calcification:
 - On parallel sides of the vessel and
 - Extending >50% of lesion length (if length ≥50mm) or minimum calcification of 20mm (if length <50mm)

Exclusion
- Rutherford category 0, 1, 5 and 6
- Significant stenosis (>50%) or occlusion of inflow tract before target zone not successfully treated
- Planned target limb major amputation
- Renal disease (SCr >2.5 mm/dl) or on dialysis
- In-stent restenosis within 10mm of target zone
- Lesions within 10mm of the ostium of the SFA or anterior tibial artery
Study Support

| Principal Investigators | William A. Gray, MD
| | Main Line Health, Lankenau Medical Center, Wynnewood, PA
| | Gunnar Tepe, MD
| | RoMed Klinikum Rosenheim, Rosenheim, Germany
| Clinical Events Committee | Louise Gambone (Director)
| | Yale Cardiovascular Research Group, New Haven, CT
| Angiographic Core Laboratory | Alexandra J. Lansky, MD (Director)
| | Yale Cardiovascular Research Group, New Haven, CT
| Safety, Monitoring, Data | Jessica Johnson (Project Manager)
| Management and Statistics | Clinlogix, Lower Gwynedd, PA

Investigators

Marianne Brodmann
Universitätsklinikum LKH Graz

Martin Werner
Hansch Krankenhaus

William Bachinsky
Pinnacle Health

Andrew Holden
Auckland City Hospital

Thomas Zeller
U-H Freiburg

Sarang Mangalmurti
Main Line Health

Claus Nolte-Ernsing
Evangelisches Krankenhaus Mühlheim

Barry Bertolet
North Mississippi Medical Center

Dierk Scheinert
Universitätsklinikum Leipzig

Martin Andrassy
Fürst Stirum Klinik Bruchsal

Sahil Parikh
Columbia University Medical Center

William Dixon
Tallahassee Research Institute

George Adams
NC Heart and Vascular

Edward Woo
MedStar Washington Hospital Center

Nima Ghasemzadeh
Northeast Georgia Heart

Lawrence Garcia
St. Elizabeth’s Medical Center

Hans Krannenberg
Asklepios Klinik Harburg

Peter Soukas
The Miriam Hospital

Carlos Mena
Yale New Haven Hospital

Mark Goodwin
Advocate Health

Malcom Foster III
Turkey Creek Medical Center

Nicolas Shammas
Midwest Cardiovascular Research Foundation

Arne Schwindt
St. Franziskus Hospital Munster

Gunnar Tepe
RoMed Klinikum Rosenheim

Nilesh Goswami
Prairie Education & Research Cooperative

Gary Ansel, John Phillips
Ohio Health Research Institute

William Miller
UC Health Northern Colorado

Nadjib Schahab
Universitätsklinikum Bonn

Patrick Alexander
Providence Park Hospital

Roger Gammon
Austin Heart

Christopher Metzger
Wellmont CVA Heart Institute

Brian Go
WakeMed Heart Center

Ralf Langhoff
Sankt Gertrauden-Krankenhaus Berlin

Steven Laster
Saint Luke’s Cardiovascular Consultants

Prakash Krishnan
Mount Sinai

Jorn Oliver Balzer
Katholisches Klinikum Mainz

Michael Lichtenberg
Karolinen-Hospital Arnsberg-Husten

Ehrin Armstrong
Denver VA Medical Center

Ian Cawich
Arkansas Heart Hospital

Miguel Montero
Baylor College of Medicine

Ethan Korngold
Providence Heart and Vascular

Jack Chamberlin
Alexian Brothers Medical Center

James McKinsey
Mount Sinai West

Vince Varghese
Deborah Heart and Lung Center

Mohammad Al Madani
Einstein Medical Center
Patients enrolled from February 2017 to May 2020
N = 306

IVL
N = 153

PTA
N = 153

Primary Endpoint Analysis
Images available
N = 146

Withdrawn (n=1)

30-day Clinical Follow-up
N = 152

Primary Endpoint Analysis
Images available
N = 133

Withdrawn (n=1)

30-day Clinical Follow-up
N = 152
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>IVL (N=153)</th>
<th>PTA (N=153)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>72.2 ± 8.0</td>
<td>71.5 ± 7.7</td>
<td>0.41</td>
</tr>
<tr>
<td>Male</td>
<td>69.3%</td>
<td>78.4%</td>
<td>0.07</td>
</tr>
<tr>
<td>Hypertension</td>
<td>94.8%</td>
<td>94.1%</td>
<td>0.80</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>86.3%</td>
<td>86.3%</td>
<td>0.60</td>
</tr>
<tr>
<td>Current smoker</td>
<td>20.3%</td>
<td>28.1%</td>
<td>0.05</td>
</tr>
<tr>
<td>Diabetes</td>
<td>41.8%</td>
<td>46.4%</td>
<td>0.72</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>25.5%</td>
<td>24.2%</td>
<td>0.97</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>66.7%</td>
<td>58.2%</td>
<td>0.21</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>24.2%</td>
<td>16.3%</td>
<td>0.13</td>
</tr>
<tr>
<td>History of CVA or TIA</td>
<td>12.4%</td>
<td>11.1%</td>
<td>0.85</td>
</tr>
<tr>
<td>ABI</td>
<td>0.74 ± 0.20</td>
<td>0.77 ± 0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>WIQ – overall</td>
<td>26.0 ± 20.9</td>
<td>26.5 ± 22.0</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Rutherford Category

<table>
<thead>
<tr>
<th>Category</th>
<th>IVL (%)</th>
<th>PTA (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC 5</td>
<td>6%</td>
<td>8%</td>
<td>0.56</td>
</tr>
<tr>
<td>RC 4</td>
<td>77%</td>
<td>74%</td>
<td></td>
</tr>
<tr>
<td>RC 3</td>
<td>17%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>RC 2</td>
<td>0%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Baseline Lesion Characteristics

Core lab adjudicated

<table>
<thead>
<tr>
<th></th>
<th>IVL N=153</th>
<th>PTA N=153</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference vessel diameter, mm</td>
<td>5.3 ± 0.8</td>
<td>5.4 ± 0.8</td>
<td>0.68</td>
</tr>
<tr>
<td>Minimum lumen diameter, mm</td>
<td>0.81 ± 0.67</td>
<td>0.83 ± 0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>Diameter stenosis</td>
<td>85% ± 12%</td>
<td>85% ± 14%</td>
<td>0.76</td>
</tr>
<tr>
<td>CTO</td>
<td>26%</td>
<td>31%</td>
<td>0.39</td>
</tr>
<tr>
<td>Lesion length, mm</td>
<td>101 ± 41</td>
<td>97 ± 42</td>
<td>0.37</td>
</tr>
<tr>
<td>Lesion length >150mm</td>
<td>12%</td>
<td>11%</td>
<td>0.72</td>
</tr>
<tr>
<td>Calcified length, mm</td>
<td>129 ± 51</td>
<td>125 ± 48</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Calcification

- None/Mild: 0.7% IVL, 0.7% PTA, P=0.23
- Moderate: 16.4% IVL, 9.8% PTA
- Severe: 82.9% IVL, 89.5% PTA
- Eccentric: 22.4% IVL, 17.6% PTA, P=0.30

*PARC definition of calcium severity

Arterial Segment

<table>
<thead>
<tr>
<th>Arterial Segment</th>
<th>IVL</th>
<th>PTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFA - Proximal</td>
<td>18%</td>
<td>10%</td>
</tr>
<tr>
<td>SFA - Mid</td>
<td>35%</td>
<td>40%</td>
</tr>
<tr>
<td>SFA - Distal</td>
<td>39%</td>
<td>48%</td>
</tr>
<tr>
<td>Popliteal</td>
<td>7%</td>
<td>3%</td>
</tr>
</tbody>
</table>

P=0.03
Procedural Characteristics

<table>
<thead>
<tr>
<th></th>
<th>IVL N=153</th>
<th>PTA N=153</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast volume, ml</td>
<td>138 ± 73</td>
<td>129 ± 61</td>
<td>0.26</td>
</tr>
<tr>
<td>Fluoroscopy time, min</td>
<td>16.6 ± 11.0</td>
<td>13.5 ± 10.1</td>
<td>0.01</td>
</tr>
<tr>
<td>Embolic protection used</td>
<td>1.3%</td>
<td>4.6%</td>
<td>0.09</td>
</tr>
<tr>
<td>Pre-dilatation</td>
<td>17.6%</td>
<td>15.0%</td>
<td>0.54</td>
</tr>
<tr>
<td>Post-dilatation*</td>
<td>5.2%</td>
<td>17.0%</td>
<td>0.001</td>
</tr>
<tr>
<td>Stent placed†</td>
<td>4.6%</td>
<td>18.3%</td>
<td>0.0002</td>
</tr>
<tr>
<td>Number of treatment balloons</td>
<td>1.6 ± 0.8</td>
<td>1.3 ± 0.6</td>
<td>0.005</td>
</tr>
<tr>
<td>Total number of pulses</td>
<td>228 ± 115</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Significantly lower maximum inflation pressure used with a 75% relative risk reduction for stent placement with IVL

*Performed with semi or NC PTA balloon if: RS >30% by visual estimate, or presence of ≥type D dissection and trans-lesional gradient > 10 mmHg
†Provisional stent placed if: RS ≥50% by visual estimate, or unresolved ≥ type D dissection and trans-lesional gradient > 10 mmHg
Post-treatment % Diameter Stenosis
Core lab adjudicated

Significant reduction in post-treatment diameter stenosis in IVL group
Post-treatment Angiographic Complications
Core lab adjudicated

<table>
<thead>
<tr>
<th>Type</th>
<th>IVL</th>
<th>PTA</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.1%</td>
<td>4.5%</td>
<td>0.31</td>
</tr>
<tr>
<td>B</td>
<td>13.0%</td>
<td>12.8%</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>8.3%</td>
<td>6.8%</td>
<td>0.03</td>
</tr>
<tr>
<td>D</td>
<td>1.4%</td>
<td>1.0</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Freedom from any dissection
IVL = 81.5%
PTA = 67.7%

Dissection ≥ Grade C
IVL = 3.5%
PTA = 15.1%
↓ 77% Relative Risk

Significant reduction in the frequency and severity of dissections with IVL

*No occurrence of thrombus, abrupt closure, no-reflow, distal emboli or perforation in both study arms
Primary Endpoint

Procedural success: Residual stenosis ≤ 30% without flow-limiting dissection (≥ grade D) prior to DCB +/- stenting by ACL

Site Reported

- **Procedural success (%)**
 - IVL: 90.1%
 - PTA: 64.5%

 Treatment effect: 25.6% [16.5%, 34.4%]

 P<0.0001

Angiographic Core Lab

- **Procedural success (%)**
 - IVL: 65.8%
 - PTA: 50.4%

 Treatment effect: 15.4% [3.9%, 26.8%]

 P=0.0065

Superior procedural success with IVL by Site and Core Lab adjudication.
Final Angiographic and Clinical Outcomes

<table>
<thead>
<tr>
<th></th>
<th>IVL N=153</th>
<th>PTA N=153</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final angiographic outcomes’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference vessel diameter, mm</td>
<td>5.4 ± 0.8</td>
<td>5.4 ± 0.8</td>
<td>0.62</td>
</tr>
<tr>
<td>Minimum lumen diameter, mm</td>
<td>4.2 ± 0.7</td>
<td>4.3 ± 0.7</td>
<td>0.39</td>
</tr>
<tr>
<td>Diameter stenosis</td>
<td>22% ± 8%</td>
<td>21% ± 9%</td>
<td>0.39</td>
</tr>
<tr>
<td>Acute gain, mm</td>
<td>3.4 ± 0.8</td>
<td>3.5 ± 0.9</td>
<td>0.63</td>
</tr>
<tr>
<td>Dissection</td>
<td></td>
<td></td>
<td>0.47</td>
</tr>
<tr>
<td>None</td>
<td>83.9%</td>
<td>77.2%</td>
<td></td>
</tr>
<tr>
<td>Type A/B/C</td>
<td>16.1%</td>
<td>22.8%</td>
<td></td>
</tr>
<tr>
<td>Type D</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>30-day clinical outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI</td>
<td>0.97 ± 0.18</td>
<td>0.99 ± 0.16</td>
<td>0.33</td>
</tr>
<tr>
<td>WIQ – overall</td>
<td>51.2 ± 30.3</td>
<td>52.9 ± 31.5</td>
<td>0.64</td>
</tr>
</tbody>
</table>

*Radiographic core lab adjudicated

Rutherford Category

```
<table>
<thead>
<tr>
<th>Category</th>
<th>IVL</th>
<th>PTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC 5</td>
<td>10%</td>
<td>6%</td>
</tr>
<tr>
<td>RC 3</td>
<td>12%</td>
<td>10%</td>
</tr>
<tr>
<td>RC 2</td>
<td>63%</td>
<td>59%</td>
</tr>
<tr>
<td>RC 1</td>
<td>15%</td>
<td>25%</td>
</tr>
<tr>
<td>RC 0</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
```

P=0.69

William A. Gray, MD

CME Accredited
30-Day Safety Endpoints

CEC adjudicated

<table>
<thead>
<tr>
<th></th>
<th>IVL</th>
<th>PTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>0.0%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Emergency Revascularization</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Major Amputation</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Thrombus/ Distal emboli</td>
<td>0.0%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Perforation</td>
<td>0.0%</td>
<td>0.7%</td>
</tr>
<tr>
<td>CD-TLR</td>
<td>0.7%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

P = NS for all endpoints
PAD III Observational Study
Core lab adjudicated

Diameter Stenosis (%)

<table>
<thead>
<tr>
<th></th>
<th>PAD III RCT</th>
<th>PAD III OS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter Stenosis (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-procedure</td>
<td>85.0%</td>
<td>80.7%</td>
</tr>
<tr>
<td>Post-IVL</td>
<td>27.3%</td>
<td>30.8%</td>
</tr>
<tr>
<td>Final</td>
<td>21.5%</td>
<td>23.6%</td>
</tr>
</tbody>
</table>

Consistent outcomes from clinical trial to real world environment

Final Angiographic Complications

<table>
<thead>
<tr>
<th></th>
<th>PAD III RCT</th>
<th>PAD III OS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissection (Type D-F)</td>
<td>0%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Perforation</td>
<td>0%</td>
<td>0.5%†</td>
</tr>
<tr>
<td>Embolization</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Thrombus</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>No reflow</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Abrupt closure</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

†Following DCB inflation; unrelated to IVL

Conclusions

• Disrupt PAD III RCT provides the largest level I evidence for the treatment of heavily calcified femoropopliteal arteries, a cohort often excluded from trials

• IVL was superior to PTA in acute procedural success and demonstrated atraumatic treatment:
 • Reduction in % diameter stenosis prior to DCB or stent placement
 • Lower maximum inflation pressure
 • Reduction in frequency and severity of dissections
 • Lower post-dilatation and stent implantation rate

• RCT outcomes are similar to PAD III registry in multiple vessel beds highlighting the consistency of IVL treatment in complex anatomy

• Powered secondary endpoint of primary patency at 12 months will be analyzed following appropriate follow-up for all enrolled patients